Identified charged hadron production in Cu+Cu at √s_{NN} = 22.5 and 62.4 GeV in PHENIX

Tatsuya Chujo for the PHENIX collaboration

Introduction

~ Baryon Anomaly at RHIC ~

PHENIX: PRL 91, 172301 (2003), PRC 69, 034909 (2004)

Nuclear Modification Factor

$$R_{AA}(p_{\tau}) = \frac{yield(AuAu)/N_{coll}}{yield(pp)} \sim R_{CP}$$

- In Au+Au √s_{NN} = 200 GeV central collisions:
 - Pions: Strong suppression of yields above $p_T \sim 2$ GeV/c, due to jet quenching effect.
 - Protons: No suppression for at intermediate p_T (2-5 GeV/c).
- Called "Baryon anomaly at RHIC".
- Quark recombination models reproduce the data qualitatively.

p/π ratios in Au+Au 200 GeV

More (anti) baryons than pions at moderate p_T (2-5 GeV/c). Does not look like vacuum jet fragmentation.

Where is the onset of the baryon anomaly at RHIC?

→New Cu+Cu data at lower √s_{NN} may give an answer...

Data Analysis

Data set:

- RHIC Run-5 (2005), measured by the PHENIX experiment.
 - Cu+Cu at 22.5 GeV.
 - Cu+Cu at 62.4 GeV.

Detectors:

- Drift Chamber, PC1, BBC and TOF for PID charged analysis.
- Centrality:
 - Subdivided minimum bias triggered events, based on BBC charge (62 GeV), or the number of PC1 hit (22 GeV).
- Corrections:
 - Geometrical acceptance, in flight decay.
 - NOTE: No weak decay feed-down correction applied.

Results

- p_T spectra in Cu+Cu at √s_{NN} = 22.5 and 62.4 GeV.
- 2. p/π⁺ and p/π⁻ ratios vs. p_T.
- 3. Nuclear modification factor: R_{AA}.

p_T spectra for pions

Filled symbols : π^+ Open symbols : π^-

p_T spectra for kaons

Filled symbols : K⁺ Open symbols : K⁻

p_T spectra for protons

^{*} No weak decay feed-down correction applied

PHENIX

p_T spectra for antiprotons

^{*} No weak decay feed-down correction applied

p/π in Cu+Cu 22.5 GeV

- Larger p/ π ⁺ ratios than those in Au+Au 200 GeV (0.5 @ p_T = 1.5 GeV).
 - Affected by the spectator protons (not produced protons) at lower $\sqrt{s_{NN}}$.
- \overline{p}/π^- ratios are ~0.3-0.4 at p_T = 2 GeV/c, which is close to the fragmentation expectations in p+p.
 - Almost no centrality dependence.

p/π in Cu+Cu 62.4 GeV

- p/π^+ ratios are reduced, compared to those in Cu+Cu 22 GeV.
- \overline{p}/π^- ratio in most central collisions reaches R=~0.6 at p_T = 2 GeV/c.
 - Centrality dependence is seen.
 - Peripheral pbar/π-: consistent with p+p value.

Beam energy dep. in Cu+Cu

- p/π^+ ratio: decreasing as a function of $\sqrt{s_{NN}}$.
- \bar{p}/π^- ratio : increasing as a function $\sqrt{s_{NN}}$.
 - Cu+Cu 22.5 GeV central data reaches the p+p values.
 - Cu+Cu 62.4 GeV central data is higher than that in 22.5 GeV.

R_{AA} for pions (22 GeV)

- p+p reference: global fit of pion data at √s ~22 GeV in p+p.
- R_{AA} is ~1.5 at p_T = 2 GeV/c, no suppression.

R_{AA} for pions (62 GeV)

• Similar, might be slightly smaller than that in 22 GeV.

R_{AA} for proton (22 GeV)

• Larger than pions significantly, which suggests the large contributions of spectator protons.

R_{AA} for proton (62 GeV)

• Similar as in 22.5 GeV, but slightly smaller value.

$R_{\Delta\Delta}$ for antiproton (22 GeV)

- Different p_T dependence from protons.
- R_{AA} ~ 1 (similar to pions' R_{AA}), binary collision scaling worked?

R_{AA} for antiproton (62 GeV)

Similar to that for 22 GeV (and also pion's R_{AA}).

Summary

Measured p_T spectra for π^{\pm} , K[±], p, \overline{p} in Cu+Cu at $\sqrt{s_{NN}}$ = 22.5 and 62.4 GeV in PHENIX.

- p/π⁺ ratio : decreasing as a function of √s_{NN} in Cu+Cu.
 - Suggests a significant contribution of spectator protons (not by the produced protons) in lower energies Cu+Cu.
- \bar{p}/π^- ratio : increasing as a function $\sqrt{s_{NN}}$ in Cu+Cu.
 - Cu+Cu 22.5 GeV shows that there is (almost) no centrality dependence, and central Cu+Cu already reaches to the p+p values.
 - Cu+Cu 62.4 GeV central data is higher than that in 22.5 GeV, centrality dependence is seen.
- R_{AA}
 - Particle type dependent.
 - π: no suppression at both 22.5 and 62.4 GeV in Cu+Cu.
 - p: enhanced (mostly due to the spectator nucleons).
 - \bar{p} : binary scaling, very similar to pion's R_{AA} .

- University of São Paulo, São Paulo, Brazil
- · Academia Sinica, Taipei 11529, China
- . China Institute of Atomic Energy (CIAE), Beijing, P. R. China
- · Peking University, Beijing, P. R. China
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 3, 12116 Prague, Czech Republic
- Czech Technical University, Faculty of Nuclear Sciences and Physical Engineering, Brehova 7, 11519 Prague, Czech Republic
- Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2, 182 21 Prague, Czech Republic
- · Laboratoire de Physique Corpusculaire (LPC). Universite de Clermont-Ferrand, 63 170 Aubiere, Clermont-Ferrand, France
- Dapnia, CEA Saclay, Bat. 703, F-91191 Gif-sur-Yvette, France
- IPN-Orsay, Universite Paris Sud, CNRS-IN2P3, BP1, F-91406 Orsay, France
- Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Rout Saclay, F-91128 Palaiseau, France
- SUBATECH, Ecòle des Mines at Nantes, F-44307 Nantes France
- · University of Muenster, Muenster, Germany
- KFKI Research Institute for Particle and Nuclear Physics at the Hungari Academy of Sciences (MTA KFKI RMKI), Budapest, Hungary
- Debrecen University, Debrecen, Hungary
- · Eövös Loránd University (ELTE), Budapest, Hungary
- · Banaras Hindu University, Banaras, India
- · Bhabha Atomic Research Centre (BARC), Bombay, India
- · Weizmann Institute, Rehovot, 76100, Israel
- Center for Nuclear Study (CNS-Tokyo), University of Tokyo, Tanashi, Tokyo 188, Japan
- Hiroshima University, Higashi-Hiroshima 739, Japan
- Ibaraki 305-0801, Japan
- · Kyoto University, Kyoto, Japan
- · Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki, Japan
- · RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
- RIKEN BNL Research Center, Japan, located at BNL
- Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan
- Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
- University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi Ibaraki-ken 305-8577. Japan
- Waseda University, Tokyo, Japan
- · Cyclotron Application Laboratory, KAERI, Seoul, South Korea
- Kangnung National University, Kangnung 210-702, South Korea
- Korea University, Seoul, 136-701, Korea
- · Myong Ji University, Yongin City 449-728, Korea
- System Electronics Laboratory, Seoul National University, Seoul, South Korea
- Yonsei University, Seoul 120-749, Korea
- IHEP (Protvino), State Research Center of Russian Federation "Institute for High Energy Physics", Protvino 142281, Russia
- Joint Institute for Nuclear Research (JINR-Dubna), Dubna, Russia
- · Kurchatov Institute, Moscow, Russia
- PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region, 188300, Russia
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Vorob'evy Gory, Moscow 119992, Russia
- Saint-Petersburg State Polytechnical Univiversity, Politechnicheskayastr, 29, St. Petersburg, 195251, Russia

• KEK - High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, 13 Countries: 62 Institutions: 550 Participants*

- Lund University, Lund, Sweden
- Abilene Christian University, Abilene, Texas, USA
- Brookhaven National Laboratory (BNL), Upton, NY 11973, USA
- University of California Riverside (UCR), Riverside, CA 92521, USA
- University of Colorado, Boulder, CO, USA
- Columbia University, Nevis Laboratories, Irvington, NY 10533, USA
- Florida Institute of Technology, Melbourne, FL 32901, USA
- Florida State University (FSU), Tallahassee, FL 32306, USA
- Georgia State University (GSU), Atlanta, GA, 30303, USA
- University of Illinois Urbana-Champaign, Urbana-Champaign, IL, USA
- Iowa State University (ISU) and Ames Laboratory, Ames, IA 50011, USA
- Los Alamos National Laboratory (LANL), Los Alamos, NM 87545, USA
- Lawrence Livermore National Laboratory (LLNL), Livermore, CA 94550, USA
- University of New Mexico, Albuquerque, New Mexico, USA
- New Mexico State University, Las Cruces, New Mexico, USA
- Department of Chemistry, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Department of Physics and Astronomy, State University of New York at Stony Brook (USB), Stony Brook, NY 11794, USA
- Oak Ridge National Laboratory (ORNL), Oak Ridge, TN 37831, USA
- University of Tennessee (UT), Knoxville, TN 37996, USA
- Vanderbilt University, Nashville, TN 37235, USA

*as of March 2005

Backup Slides

p+p fit at \sqrt{s} = 22.5 GeV (pions)

R_{AA} for π⁰ in Cu+Cu 22.5 GeV PH^{*}ENIX

PbSc (0-10%)

Figure 10: R_{AA} for the PbSc calorimeter and the Centrality Class 0-10%

PbGI (0-10%)

Figure 14: R_{AA} for the PbGl calorimeter and the Centrality Class 0-10%

SPS and AGS

Fig. 47. Invariant yields of p, \bar{p} , and π as function of p_T in central Pb + Pb collisions at the SPS $(\sqrt{s_{NN}} = 17 \text{ GeV})$ (left panel) and in central Au + Au collisions at the AGS $(\sqrt{s_{NN}} = 5 \text{ GeV})$ (right panel). The \bar{p} spectrum from the AGS is scaled up by a factor 100. All data are at mid-rapidity $(y - y_{\text{em}} \approx 0)$ and are from W98 [163], NA44 [226], NA49 [227], and E866 [228,229].

Nucl. Phys. A 757, 184 (2005), PHENIX, nucl-ex/0410003

NA49 data

NA49 collaboration, nucl-ex/0510054

R_{AA} for pions

R_{AA} for kaons

R_{AA} summary (22 GeV)

R_{AA} summary (62 GeV)

p/p ratio vs. p_T

22.5 **GeV**

62.4 GeV

π^{-}/π^{+} , K⁻/K⁺ vs. p_T (22.5 GeV)

π^{-}/π^{+} , K⁻/K⁺ vs. p_T (62.4 GeV)

p+p reference data (with fit)

23 GeV

63 GeV

Kaons and protons: Fit results of ISR p+p 63 GeV data. B. Alper et al, NPB100(1975)237. pions: global fits of p+p data, e.g. nucl-ex/0411049, D. d'Enterria.